
Supporting the Domain expert in planning domain construction

Ruth Aylett, Christophe Doniat

University of Salford
Centre for Virtual Environments

Business House
Salford M5 4WT

Fax: +(00 44) (0) 161 295 2925
r.s.aylett @salford.ac.uk; m.soleil@wanadoo.fr

Abstract
This paper discusses work aimed at allowing domain experts
to generate a domain model for an AI planning system as
part of a larger project to build an integrated set of tools for
supporting AI planning. It outlines the overall methodology
and discusses the tool in which this is embodied. A Domain
model is generated in which can be represented by cluster of
constraints shaping an Ontology of each studied case.
Progress has been made towards automatic conversion into
the modelling language OCL and integration with the OCL
tool GIPO. We illustrate the methodology by applying it in
two examples of planning

Introduction and motivation

The effort required to construct a domain model for an AI
planning system has long been recognised as a major
barrier to the take-up of this technology outside the AI
planning community. The PLANFORM project, which is
supported by the UK Engineering and Physical Sciences
Research Council, involves researchers collaborating
between the Universities of Huddersfield, Salford and
Durham [Planform 99] who are tackling this problem. Its
aim is to research, develop and evaluate a method and
supporting high level research platform for the systematic
construction of planner domain models and abstract
specifications of planning algorithms, and their automated
synthesis into sound, efficient programs that generate and
execute plans. Figure 1 shows the high-level architecture of

the PLANFORM system.
Within Planform, the domain model is represented in the

language OCL [McCluskey & Porteous 97, Liu &
McCluskey 99] which supports validation and checking
tools as well as translation to other formalisms such as
PDDL [McDermott et al 98]. The toolset GIPO [Simpson
et al 01] has been produced to help in the iterative
construction and validation of this model. However GIPO
still currently requires too much specialist knowledge of
OCCL and of AI planning in general to be a suitable
interface for a domain expert – one who understands the
domain in which planning is to take place but lacks any
specific expertise in AI planning. The KA-Tool discussed
here is aimed at such domain experts.
The problem of supporting knowledge acquisition directly
from the domain expert, without the intervention of a
knowledge engineer, has been discussed in the field of
Knowledge-Based Systems (KBS) for many years [Musen
98,Valente 93]. A consensus has been reached that this
may be feasible where a skeletal domain model can be
provided to guide the knowledge acquisition process and
both the skeleton model and the process itself can be
defined through a methodology embodied in the
knowledge acquisition tool [Musen 98]. The key
components of the skeleton model are seen as domain
ontologies combined with domain-independent problem-
solving methods which have often been thought of as
generic tasks. The best-known – but far from the only –

Figure 1: Planform architecture

mailto:@salford.ac.uk;
mailto:m.soleil@wanadoo.fr

example of a methodology is Common KADS [Breuker &
Wielinger 89, Shrieber et al 94], which provides libraries
of configurable problem-solving components together with
stereotypical configurations which can be thought of as
corresponding to types of abstract problem-solving tasks
such as diagnosis by heuristic classification or
interpretation.

It is noticeable that AI Planning has rarely been
considered as part of this research (see Valente 93 for a
rare exception). While in theory planning could be
considered as one or more generic tasks, in practice the
Knowledge Engineering community has concentrated on
other generic tasks – diagnosis in particular [Benjamins 93]
– while AI Planning researchers have hardly been involved
at all, tending to concentrate on the development of
planning algorithms.

The approach discussed here draws on this work in the
KBS community, and sees the combination of ontologies,
logics and generic problem-solving methods as a way of
addressing knowledge acquisition for planning [Musen 98].
It supports the capture and structuring of relevant
knowledge about a domain and its intelligent behaviours
[Hayes-Roth & Hayes-Roth 90] because they play an
important role in the choice of an appropriate problem-
solving method, possibly configured from complex
components stored in a library [Valente 93].

Knowledge Acquisition Process
Since the tool being constructed automates a knowledge
acquisition (KA) process, first it is necessary to model the
process itself. The KA process is shown in Figure 2,
embodying two different extraction/refinement processes.

The first of these (bottom - right) moves from protocol to
problem specification . By protocol we mean raw domain
knowledge - transcripts, documents, interviews,
observations1. A protocol is created by a problem-solving
episode, where the expert is provided with an AI Planning
problem, of a kind that they normally deal with, and are

1 We will used the term ‘transcript’ in the next paragraphs
to mean a combination of transcripts, documents,
interviews, observations as a whole.

asked to solve it. As they do so, they are required to
describe each step, and their reasons for doing what they
do. The transcript of their verbal and/or text account is, in
this case, called a protocol . By problem specification we
mean a definition or description of an application domain
represented as a set of choices at a particular level of
abstraction in an ontological hierarchy. Thus 'Entertaining
a foreign visitor' and ‘Drumstore’, the domains used for the
experiments reported later, are problem specifications.

The second extraction/refinement process moves from
problem specification (middle - right) to conceptualisation
(top – right). By conceptualisation , we mean a stable and
restricted formal representation (concepts, relationships
and objects) with defined structure and behaviour2. Clearly
movement between these levels is iterative rather than
linear.

The conceptual model (top - left) is represented using a
hierarchical frame system because this allows easy
representation of inheritance between sorts (the
relationship kind-of) and/or aggregation between sorts (the
relationship part-of) for instance. Translation into a sorted
first-order logic such as that used by OCL is
straightforward. Frames have an advantage over a first-
order logic in that both structure and behaviour can be
embodied in one generic entity.

An ontology is defined [Gruber 93] as a rigorous
specification of a set of specialised vocabulary terms
sufficient to describe and reason about the range of
situations of interest in a particular domain - a conceptual
representation of the domain entities, events, and
relationships. Two primary relationships of interest are
abstraction (kind-of) and composition (part-of). Thus an
ontology provides a grounding of the key concepts within a
domain. In principle we need both an ontology of planning
problem domains and of planning software to carry out
knowledge acquisition since the premise is that the
conceptual framework of the problem domain is not the
same as that of the planning software – otherwise there
would be no problem for the domain expert.

2 Note here that this is a basic definition of behaviour only.
Complex behaviours are not covered in this present work.

Figure 2. Knowledge acquisition process1.

A Domain dictionary (middle of figure) is a partial
ontology - using the experimental approach, it is hard to
make an exhaustive analysis of all domain objects.
Nevertheless, the problem specification can be used to
define relevant objects and relationships, using
macroscopic properties that support appropriate choices.
Broadly, the Domain Dictionary is associated with (i) a
particular domain, (ii) specification of a problem or
problems that we want to solve, (iii) the reasoning that
belongs to the studied domain and allows the specified
problem to be solved.

Overview of PLANFORM-KA Tool architecture
Figure 3 shows the main architecture of the PLANFORM-
KA tool – an intelligent system that contains the KA
process. The user applies the module of domain model
building to a particular problem specification . The building
of a new conceptual model might be carried out with or
without an existing problem specification from the Domain
model library . The result is recorded in this library. On the
right-hand side, the overall knowledge base consists of the
conceptual model of the knowledge acquisition process
itself, called PLANFORM-KA and the KA-Expertise
belonging to the particular conceptual model being
constructed.

Case studies and methodology

In this section, we present two case studies created with
our methodology, using the problem specifications: (i)
‘EVentus: Entertaining a foreign visitor to your lab at the

weekend’ and (ii) ‘Drumstore: a logistics problem in a
nuclear waste factory’. We conducted these experiments,
respectively with ten people and six people who verbalised
their knowledge about how they would solve this problem
during interviews. We chose EVentus because (i) people
knew about it (drew on general rather than specialised
knowledge) and it was not difficult to capture it, (ii) it was
an example of a planning domain. Drumstore was chosen
because it had already been implemented as an AI planning
domain within the group. The interviews contained the
unstructured knowledge (discourse) and sometimes some
notes such as graphics, plans and other material describing
knowledge and activity (explicitly/implicitly) both about
the case studies and the KA process itself.

It is important to understand the level of abstraction at
which such a sample problem must work. The
PLANFORM toolkit as a whole will be used to create a
domain model within which a number of specific tasks can
be planned. Thus the experiment does not start with a
specific task, but with the generic problem specification.
Subjects were asked to explore the generic domain model
that would be needed to plan within the domain of the
problem specification and to support the solving of a
number of specific tasks. Note that a more abstract version
of this problem would be to replace ‘your lab’ with ‘a lab’
where this might be anywhere in the world potentially. An
instance of a specific task would be something like
‘Professor Stein from GMD Germany is to be entertained
on Saturday May 9

th
’.

Figure 3: Architecture of the KA-Tool

Building of a domain dictionary
The first extraction phase gives us a domain dictionary
(Table 1) that puts together a set of terms according to the
problem specification.

Drumstore EVentus

 Robot
 Thing
 Gripper
 Object
 Relation
 Reference

 Thing
 Activity
 Context
 Visitor
 Capability

Table 1. Domain dictionary

Next, we built a set of scenarios with the shared
knowledge of these domain experts to find out how each
expert defines reasoning strategies to solve the problem
specification. We used a part of the KOD (Knowledge
Oriented Design) [Vogel 88] method to obtain an accurate
process for knowledge acquisition and to build the
conceptual model through the set of examples and
scenarios (see section 2.2). Table 2 and 3 show the number
of instances of each term in each scenario. We will call
these outcomes instance coverage.

Drumstore Terms
1

R T G O Rel Ref
1
2
3
4
5
6
7
8

5
10
20
10
5
6
8
7

1
2
5
3
1
1
1
1

3
2
5
3
4
3
5
4

7
5
12
5
7
13
7
11

2
2
1
1
2
2
2
2

3
3
3
3
2
2
3
2

Table 2.Instance coverage of Drumstore.

1 Each Drumstore scenario is designed through the six
terms as follows: Robot (R), Thing (T), Gripper (G),
Object (O), Relation (Rel) and Reference (Ref).

EVentus Terms
2

T A C V Ca
1
2
3
4
5

9
5
8
5
13

4
6
7
5
7

1
1
2
3
1

1
1
2
1
2

3
2
2
4
6

Table 3.Instance coverage of EVentus.

This shows that knowledge about this particular
specification varies between domain experts giving
different number of examples of each term. This coverage
gives us an idea of experts’ practice so as to build the
interface of the future intelligent system.

Building of conceptual/epistemological model
The second extraction gives us first a conceptual model,
i.e.semantic relationships, objects and actions. Then the
model is completed with a epistemological model, i.e., the
definition of concepts, its hierarchy and structuring
relationships (behaviours). A domain model is thus defined
by these representations in our methodology by using a
frame system as in Figure 4.
Drumstore relies on the nine following generic

concepts: Thing is a root of the domain model and
describes two mobile things: Robot and Object. Robot
depicts a real robot, which can navigate and has equipment
– Gripper – to bring and carry some Object according
to a Relation/Reference address pair (e.g.
(Object,at,beacon1)). Primitives depict a set
of generic concepts like Drum (Object), At, Near
(Relation) and Beacon (Reference). Substate
and Transition depict respectively the conditions in
which Robot does some tasks and the state of each task
when it has taken place.
. EVentus contains the nine following generic concepts:
Visitor is a locus of the domain model and describes a

2 Each EVentus scenario is designed through the four terms
as follows: Thing (T), Activities (A), Context (C), Visitor
(V) and Capability (Ca).

Figure 4. Frame systems of Drumstore and EVentus

real visitor according to her/his real capacities, which are
depicted by Capacity. Activity and Context
describe behaviours of a visitor, Plan describes a set of
alternative plans used by a visitor. Thing describes
Places and Events used during the activity. Finally,
Primitives depicts a set of generic concepts like a
restaurant, a town (place) or an exhibition (event).

Summary
A KA process has been carried out to capture knowledge
and build two domain models for particular problem
specifications through two case studies: Drumstore and
EVentus. The generic concept Thing is defined in both
domain models with different semantics. In Drumstore,
this concept represents an abstraction of mobiles but in
EVentus, it represents an abstraction of locations.

Categories Drumstore EVentus

Agent

Object

Task

Thing

Position

Substate
Transition

Visitor

Thing

Context
Activity
Plan

Table 4. Abstraction similarity undependable the level
between Drumstore and EVentus.

Table 4 shows the similarity between Drumstore and
EVentus concepts using three main categories: Agent,
Object and Task as a skeleton ontology for planning
domains [9]. Note that the Task category is divided into
two semantic sub-categories: (i) the Drumstore task is
state-based and the EVentus task is action-based . This
represents a first step towards an epistemological model.

An Intelligent system: PLANFORM-KA

In this section we discuss the Planform-KA tool in more
detail – see Figure 5 for its conceptual model. As outlined
above, the process component of the tool can be
decomposed into a set of refinement processes – called
phases – carried out by the domain expert according to an
expertise . We envisage supporting it with a generic
ontology like the Upper Cyc Ontology [Upper Cyc]
(though in this work we have constructed a small ontology
ourselves) to start instance collection .

This Ontology provides a sufficient common grounding
for applications. Some concepts such as Actor or Plan
are already supplied as generic definitions, which should
help the domain expert . It also includes definitions of
Object and Agent categories (as in the Summary above)
and possibly a fragmentary definition of the Task
category. That is the case for Drumstore for instance
where there are State and Transition generic
concepts as parts of OCL.

Conceptual model of PLANFORM-KA
Its conceptual model (Figure 5 above) relies on several
interrelated generic concepts. The domain expert
generic concept depicts the subject acquiring the
knowledge model, the KA-expertise generic concept
features the knowledge required to build the knowledge,
the KA-Process generic concept describes the behaviour
carried out by the domain expert. The KOD method was
again used to elaborate a frame system.

Frame representations for Domain expert, KA-
Expertise and KA-Process
For reasons of space we illustrate only a subset of the
frame representations for these concepts.

Figure 5. The PLANFORM-
KA conceptual model.

Domain expert
We consider the domain expert (DE) as the cognitive agent
carrying out the process of knowledge acquisition. DE has
a mental model of the real world expressed in concepts.
The domain expert generic concept represents the
properties of this agent in relation to the carrying out of the
KA-Process and is central to the overall conceptual model
since there are composition relationships with concepts
KA-Process and KA-expertise

KA-Expertise
The KA-Expertise generic concept represents the
memory of our domain expert . This holds three knowledge
categories: transcripts from a case study, and the related
domain dictionary and domain model.

The Transcript generic concept represents the
properties of documents such as free-text or graphics
collected in a case study. The Domain dictionary
generic concept represents the properties of a domain
specification expressed as a set of choices – terms –
themselves organised into a set of scenarios (Figure 6).

DOMAIN DICTIONARY Frame and its slots Arity

Kind-of value KA-EXPERTISE

Name domain STRING
 If-add
<TERM,createinstance(),($term)>

Term domain TERM
 If-add <EXAMPLE,create-
instance(),($example)>

Scenario domain SCENARIO
1

(1)
(1,1)

(1)
(1,1)

 (1)
(1,n)

(1)
(1,n)

Figure 6. DOMAIN DICTIONARY Frame definition.

The Domain model generic concept depicts the
properties of a conceptualisation as a set of
conceptual/epistemological and logical representation
levels (Figure 7).

DOMAIN MODEL Frame and its slots Arity

Kind-of value CONCEPT

Name domain STRING
 If-add <CONCEPTUAL_MODEL,create-
instance(),($Conceptual_level)>

Conceptual_level value CONCEPTUAL_MODEL
 If-add <LOGICAL_MODEL,create-
instance(),($Logical_level)>

Logical_level domain LOGICAL_MODEL

(1)
(1,1)

(1)
(1,1)
 (1)

(1,1)

(1)
(1,1)

Figure 7. DOMAIN MODEL Frame definition.

1 Each scenario will spead through the relationship with the
instances of examples.

KA-Process
The KA-Process generic concept represents the process
which drives knowledge acquisition and refinement phases.
The KA process starts with an instance collection phase,
i.e. the explaining of each term by providing examples of
it. For example, Drum and Robot, two terms of the terms
in Drumstore, contain the following instances:
Drum D12 is radioactive
Drum D12 is at beacon B14
Robot R3 navigates from location S3
towards beacon B14

Robot R3 docks at beacon B14
Robot R2 grabs from beacon B15 drum D12
This phase continues until the expert provides instances

for each newly defined term. The process then continues
with a creation of scenarios (scenariosation) phase, the
description of several scenarios – particular problems to be
solved – within the scope of the given global goal (for
example: entertaining a foreign visitor; a logistic problem
in a nuclear waste factory) using the previously defined
instances.

Each scenario belongs to one expert or a group of
experts. Finally, a scenario can be seen as a set of facts
(predicates), which will be used to define some properties,
constraints, plan and goal states samples at the conceptual
level. The outcome is a terminology, i.e. a set of terms and
a set of scenarios. The built-in ontology is used to prompt
the expert during this phase.

This bottom-up approach has also been supplemented by
a top-down approach in which the ontological categories
agent, object and action, [Aylett & Jones 96] are
used to drive a question cycle in which new terms are
extracted from the expert. Questions move between the
categories, so that if the expert provides an agent term
(for example robot), they are then prompted for actions
carried out by that agent and objects involved in the action.

At the conceptual/epistemological level, first of all, the
process automatically carries out a translation phase into
the frame-based representation, so that each defined term
becomes a frame. Next, the domain expert defines by hand,
or through the agent-object-action question cycle, the
properties of each frame. For example, the term Robot
becomes the Robot frame and belongs to the Concept2

superframe..
Following the same process, we defined the Visitor

frame – from EVentus – as seen below. The
CAPABILITY frame depicts the properties of natural
abilities and skills that make the visitor able to do some
activities. A visitor could have either at least seven {Status,
gender, age, budget, type, quality, nationality} or several
further capabilities such as {like to try new things,
accompanying other people, swim, has a budget, other}.

2 SuperFrame CONCEPT is the generic frame, which is the
root/father of all frames in the frame system.

VISITOR Frame and its
slots

Relationship
type

Arity

 Kind-of value AGENT Kind-of (frame-
frame)
Inheritance
(frame–frame)

(1)
(1,1)

 Name domain String =
{Fred,Group B,other}

 If-add
<VISITOR,create-
instance(),($group)>
 If-add<PLAN,create-
instance(),($pref-to-
do)>
 If-add
<CAPABILITY,create-
instance(),($capability
)>

Has-a
(frame–attribut
e)
Is-a
(frame–instance
)
(Behaviour)
(Behaviour)
(Behaviour)

(1)
(1,1)

 Group domain VISITOR Part-of
(frame–frame)

(1)
(0,n)

 Pref-to-do domain PLAN Part-of
(frame–frame)

(1)
(1,n)

 Capability domain
CAPABILITY

Part-of
(frame–frame)

(1)
(7,n)

The conceptualisation finishes with a second translation
phase from the frame-based representation into sorted first-
order logic, in which each defined frame becomes a set of
propositions. Here, we decided to use the sorted first-order
logic language OCL. In OCL, substate and transition
substate concepts describe respectively, the conditions
before the transformation of each task and the transition
when an object changes from one substate to another
substate.

This translation is automatic: each frame ‡1 sort, each
instance of frame ‡ object, each attribute ‡ predicate and
each part-of relationship with its related arity ‡ a defined
predicate called ‘belongs_to’. For example, table 5 shows
the Robot frame and its translation into OCL where
gripper – equipment – of the robot. The arity of this slot
(column Arity, bottom) is defined by (1), i.e. this slot
takes one frame gripper in the relationship at the same time
and (1,1), i.e. this slot allows the obligatory instantiating
of one gripper’s instance. As a result, the relationship and
its arity of this slot translates into invariant predicates
(bottom) the constraint that one robot has to have one
gripper only.

Evaluation and results
A first demonstrator has been implemented to validate the
approach of PLANFORM-KA. Figure 8 shows the main
graphical user interface during the creation of the Robot
generic concept in the Drumstore domain model.
We have also generated the logical model seen in
Appendix 1 with OCL semantics and syntax through a first
version of a translator:

1 ‡ means ‘is translated into the type of…’

Generalising over the different phases of the KA process,
we have formulated the notion of Constraint. Thus the
Term generic concept – in the instance collection phase –
is a kind of constraint which allows the domain expert to
make a set of choices to justify the domain specification.
Next, the Scenario generic concept – used in the
scenarioisation phase – is also a kind of constraints,
allowing choices in the design of task representations. Thus
the task could be state-based, action-based and so forth.

In the same way, the Relationship generic concept
– in the conceptualisation phase – is a kind of constraint
(Figure 9), which structures each concept. In addition, the
Arity and Daemon generic concepts – from the
epistemological phase – are also kinds of constraints
(Figure 10) on the problem-solving methods (PSM) and
heuristics.

Finally, the Proposition generic concept – from the
logical phase – is also a kind of constraint (Figure 13),
representing the chosen logical language. The
Constraint is then described as something that must be
true. Thus in the KA-process we define a cluster of
constraints (Figure 11) across the several representation
levels.

Capturing actions
The creation of a strong methodological framework for the
Planform-KA tool was seen as a priority, and this has been
accomplished. What is required now is to incorporate the
planning-specific conceptual framework of agent, object
and task [Aylett & Jones 96] in a more direct fashion. We
have not at the time of writing attempted to generate
planning operators into OCL, but the question-driven
agent-action-object dialogue is seen as the basis for doing
so. Given that Planform-KA sits within the overall

Figure 8 – Creating the term Robot

Planform architecture, even the generation of skeletal
operators would allow use of GIPO’s refinement
mechanisms to fill them out into a complete form. This
would require an AI planning expert to supplement the role
of the domain expert but would at least automate the basic
knowledge acquisition process from the expert.

Related work

Many specific approaches propose a set of solutions for the
acquisition, the representation and the sharing/reusing of
knowledge using libraries and/or strategies, since this topic
has been studied extensively in the KBS community since
the 1980s. Some of them are more specialised in the first
extraction of knowledge proposing a generic surrogate to
capture knowledge. Protégé [Freidman-Noy et al 00]
includes a suite of tools for editing ontologies, which can
automatically generate customised editors that are
accessible to domain experts. The Protégé library includes
the problem-solving strategies (diagnosis) and also
methods ontologies that describe the kinds of domain-
independent knowledge used in strategies. EXPECT [Gil &
Blythe 00a] used the explicit representations of problem-
solving strategies (propose-and-revise strategy for the
configuration design task, for example) that is used to
support flexible approaches to knowledge acquisition. For
instance, Protégé is an approach supported by a tool that
captures new ontologies, and offers a library of problem-
solving methods – For example propose-and-revise – to
combine with them.

EXPECT [Gil & Blythe 00a] is a framework and
knowledge based system to acquire and represent problem

solving method capabilities. PLANET [Gil & Blythe 00b]
is Ontology for the representation of plans in the AI
Planning field and is very relevant to the more extended
framework discussed here. In other approaches, the answer
for a given problem is built through a combined set of
different techniques (AI methodologies, for example KOD,
KADS [Shrieber et al 94]) according the major aim
(diagnosis for example [Mercatini et al 99, Mercatini et al
00]).

Conclusion and further work

Surprisingly, given the amount of work in the KBS
community in general, knowledge acquisition has not been
widely studied in AI planning. Yet applying planning
systems to real-world problems requires a systematic
approach to knowledge acquisition and a methodology
supporting reuse rather than ad-hoc adaptations of specific
planning systems by particular individuals whose expertise
remains private and invisible. The work discussed here
represents some steps in this direction.

Conclusion
Our work consisted in demonstrating the value of the
methodology called PLANFORM-KA in supporting a
knowledge acquisition process.

First of all, we have presented the basic steps of a
methodology to build a representation of AI Planning case
studies according to a given problem specifications . We
have described how a cluster of constraints could help
domain experts during the knowledge acquisition process
and how the configuration of a cluster at any representation
level can formalise the knowledge of a domain expert.

Second, we have validated our KA process through the
building of the case studies such as Drumstore and
EVentus and shown some results as follows:

Figure 9. Constraints-cluster on conceptual model

Figure 10. Constraints-cluster on epistemological model

Figure 11. Clustered constraints define the KA
model and process

• Instance coverage . This allows us to study the interaction
with the domain expert,

Two frame system . These introduce different abstraction
levels of knowledge.

• Three AI Planning categories : Agent, which is a mobile
thing like Robot or Visitor, Object, for example
location (Position, Place, Event) and Task,
which is specialised into action-based and state-based
representations.

• The Constraint generic concept. It features an abstraction
of several constraints defined at different representation
levels.

Finally, we are building on the question-driven interface
and expect soon to generate at least outline planning
operators

Further work
So far, we have built a framework for an intelligent system
to solve a set of issues concerning the knowledge
acquisition in AI Planning. We will make a systematic
survey – at the epistemological level – of other approaches
like PROTÉGÉ, EXPECT or PLANET, for instance, which
focus on a similar approach with respect to reuse of
ontology. A particular direction is to explore the use of
generic types, [Fox & Long 00] formulated by Planform
co-researchers Fox and Long, within the question-driven
acquisition module. Currently, generic types are extracted
from PDDL domain models, but the FSM definitions used
for this might be moved towards the domain expert through
incorporation into Planform-KA. Thus once an expert
identifies a mobile agent for example, the system could
actively prompt for the possibility of route-following.
Further case-study examples will be explored in order to
assess the coverage Planform-KA is able to provide for
domains where a domain model has already been created
by hand. Finally, supporting the expert with a much larger
ontology – possibly a specialised version of the CYC
Upper ontology – will also be explored. This would then
enable much more widespread trials of the system

References
Aylett, R.S & S. Jones. Planner and Domain: Domain

Configuration for a Task Planner. Int. Journal of Expert
Systems, 9(2), 279-318, 1996.

Benjamins, V. R. (1993). Problem Solving Methods for
Diagnosis. PhD thesis, University of Amsterdam,
Amsterdam, The Netherlands.

Breuker, J. and Wielinga, B. (1989). Models of Expertise
in Knowledge Acquisition. G. Guida and C. Tasso (eds).
Topics in Expert Systems Design: methodologies and tools.
North Holland Publishing Company, Amsterdam, The
Netherlands

M. Fox, and D. Long. Automatic Synthesis and use of
Generic Types in Planning. AIPS 2000 - Workshop on
Analysis and Exploiting Domain Knowledge for Efficient
Planning.

Fridman-Noy, N. et al. The knowledge model of
Protégé-2000: combining interoperability and flexibility.
2th Int. Conf. on Knowledge Engineering and Knowledge
Management (EKAW). Juan-les-Pins (France) 2000.Y.

Gil and J. Blythe. 2000a How Can a Structured
Representation of Capabilities Help in Planning?
Proceedings of the AAAI – Workshop on Representational
Issues for Real-world Planning Systems. 2000.

Y. Gil and J. Blythe. 2000b PLANET: A Shareable and
Reusable Ontology for Representing Plan. Proceedings of
the AAAI – Workshop on Representational Issues for Real-
world Planning Systems. 2000.

Gruber, T.R. A Translation Approach to Portable
Ontology Specifications. Knowledge Acquisition, 2(5),
1993.

Hayes-Roth, B. and F. Hayes-Roth. A Cognitive Model
of Planning. Representation and Reasoning. Readings in
Planning. Morgan Kaufman Publishers. 1990.

D. Liu and T. L. McCluskey, The Object Centred
Language Manual - OCLh - Version 1.2. Technical report,
School of Computing and Mathematics, University of
Huddersfield, 1999.

McDermott, D et al. PDDL --- The Planning Domain
Definition Language. In Machine Intelligence 4. D.
Michie, ed., Ellis Horwood, Chichester (UK). 1998.

McCluskey, T.L and Porteous J. M. Engineering and
compiling planning domain models to promote validity and
efficiency, Artificial Intelligence, pp.1-65. 1997.

J.M. Mercantini et al. Safety previsional analysis method
of an urban industrial site. Scientific Journal of the Finnish
Institute of Occupational Health, serie: People and Work,
safety in modern society, pp. 105-109, 33. 2000.

N. Mercantini et al. Etude d’un systeme d’aide au
diagnostic des accidents de la securite routiere. IC’99.
Palaiseau (France). 1999.

M. Musen. Modern Architectures for Intelligent
Systems: Reusable Ontologies and Problem-Solving
Methods. In Chute (Eds), AMIA Annual Symposium, 46-
52. 1998.

Planform. An Open environment for building planners.
Available at http://helios.hud.ac.uk/planform. 1999.

Schreiber, G., Wielinga, B., de Hoog, R., Akkermans, H.
and Van de Velde, W. (1994). CommonKADS: A
Comprehensive Methodology for KBS Development. IEEE
Expert, 9 (6), pp. 28-37..

Simpson, R.M; T. L. McCluskey, W. Zhao, R. S. Aylett
and C. Doniat 2001 An Integrated Graphical Tool to
support Knowledge Engineering in AI Planning.
Proceedings, 2001 European Conference on Planning,
Toledo, Spain.

.Sowa, F. Knowledge representation: logical,
philosophical and computational foundations. Brooks/Cole
(eds). 2000.

Valente, A. Planning models for the CommonKADS
librairy. ESPRIT Project KADS-II. 1993. Available at
http://www.swi.psy.uva.nl/usr/andre/publications.html.

Vogel..C. Le genie cognitif. Masson (Eds). 1988.

http://helios.hud.ac.uk/planform
http://www.swi.psy.uva.nl/usr/andre/publications.html

The Upper Cyc Ontology, available at
http://www.cyc.com/cyc-2-1/cover.html.

Appendix 1 – OCL model
domain_name(drumstore).

% Sorts
sorts(non_primitive_sorts,[thing,position]).
sorts(primitive_sorts,[robot,gripper,object,relat
ion,reference]).
Sorts(thing,[robot,object]).

% Objects
objects(robot,[r1,r2,r3,r4]).
objects(gripper,[g1,g2,g3,g4]).
objects(object,[d1,d2,d3,d4,d5,d6,d7,d8,d9,d10,d1
1,d12]).
objects(relation,[near,at]).
objects(reference,[s1,s2,s3,s4,b1,b2,b3,b4,b5,b6,
b7,b8,b9,b10,b11,b12,b13,b14,b15,b16]).

% Predicates
predicates([
 can_sense(robot,object,relation,reference),
 sense_on(robot),
 position(thing,relation,reference),
 full(gripper),
 empty(gripper),
 belongs_to(robot,gripper),
 in(object,gripper),
 released(object),
 in_range(reference,reference)]).

% Atomic Invariants
atomic_invariants([

position(r1,at,d12),position(d9,at,d4),position(r
2,near,s2),

belongs_to(r1,g1),belongs_to(r2,g2),belongs_to(r3
,g3),belongs_to(r4,g4),
 in_range(s1,b12),in_range(b12,s1),
 in_range(s2,b15),in_range(b15,s2),
 in_range(s3,b14),in_range(b14,s3),
 in_range(s4,b13),in_range(b13,s4),
 in_range(b13,b1),in_range(b1,b13),
 in_range(b15,b13),in_range(b13,b15),
 in_range(b12,b14),in_range(b14,b12),
 in_range(b14,b16),in_range(b16,b14)]).

http://www.cyc.com/cyc-2-1/cover.html

